\(\int \frac {(1-2 x) (2+3 x)^5}{3+5 x} \, dx\) [1194]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 51 \[ \int \frac {(1-2 x) (2+3 x)^5}{3+5 x} \, dx=\frac {166663 x}{15625}+\frac {127779 x^2}{6250}+\frac {2469 x^3}{625}-\frac {17469 x^4}{500}-\frac {5427 x^5}{125}-\frac {81 x^6}{5}+\frac {11 \log (3+5 x)}{78125} \]

[Out]

166663/15625*x+127779/6250*x^2+2469/625*x^3-17469/500*x^4-5427/125*x^5-81/5*x^6+11/78125*ln(3+5*x)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 51, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {78} \[ \int \frac {(1-2 x) (2+3 x)^5}{3+5 x} \, dx=-\frac {81 x^6}{5}-\frac {5427 x^5}{125}-\frac {17469 x^4}{500}+\frac {2469 x^3}{625}+\frac {127779 x^2}{6250}+\frac {166663 x}{15625}+\frac {11 \log (5 x+3)}{78125} \]

[In]

Int[((1 - 2*x)*(2 + 3*x)^5)/(3 + 5*x),x]

[Out]

(166663*x)/15625 + (127779*x^2)/6250 + (2469*x^3)/625 - (17469*x^4)/500 - (5427*x^5)/125 - (81*x^6)/5 + (11*Lo
g[3 + 5*x])/78125

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {166663}{15625}+\frac {127779 x}{3125}+\frac {7407 x^2}{625}-\frac {17469 x^3}{125}-\frac {5427 x^4}{25}-\frac {486 x^5}{5}+\frac {11}{15625 (3+5 x)}\right ) \, dx \\ & = \frac {166663 x}{15625}+\frac {127779 x^2}{6250}+\frac {2469 x^3}{625}-\frac {17469 x^4}{500}-\frac {5427 x^5}{125}-\frac {81 x^6}{5}+\frac {11 \log (3+5 x)}{78125} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.82 \[ \int \frac {(1-2 x) (2+3 x)^5}{3+5 x} \, dx=\frac {2813811+16666300 x+31944750 x^2+6172500 x^3-54590625 x^4-67837500 x^5-25312500 x^6+220 \log (3+5 x)}{1562500} \]

[In]

Integrate[((1 - 2*x)*(2 + 3*x)^5)/(3 + 5*x),x]

[Out]

(2813811 + 16666300*x + 31944750*x^2 + 6172500*x^3 - 54590625*x^4 - 67837500*x^5 - 25312500*x^6 + 220*Log[3 +
5*x])/1562500

Maple [A] (verified)

Time = 0.73 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.71

method result size
parallelrisch \(-\frac {81 x^{6}}{5}-\frac {5427 x^{5}}{125}-\frac {17469 x^{4}}{500}+\frac {2469 x^{3}}{625}+\frac {127779 x^{2}}{6250}+\frac {166663 x}{15625}+\frac {11 \ln \left (x +\frac {3}{5}\right )}{78125}\) \(36\)
default \(\frac {166663 x}{15625}+\frac {127779 x^{2}}{6250}+\frac {2469 x^{3}}{625}-\frac {17469 x^{4}}{500}-\frac {5427 x^{5}}{125}-\frac {81 x^{6}}{5}+\frac {11 \ln \left (3+5 x \right )}{78125}\) \(38\)
norman \(\frac {166663 x}{15625}+\frac {127779 x^{2}}{6250}+\frac {2469 x^{3}}{625}-\frac {17469 x^{4}}{500}-\frac {5427 x^{5}}{125}-\frac {81 x^{6}}{5}+\frac {11 \ln \left (3+5 x \right )}{78125}\) \(38\)
risch \(\frac {166663 x}{15625}+\frac {127779 x^{2}}{6250}+\frac {2469 x^{3}}{625}-\frac {17469 x^{4}}{500}-\frac {5427 x^{5}}{125}-\frac {81 x^{6}}{5}+\frac {11 \ln \left (3+5 x \right )}{78125}\) \(38\)
meijerg \(\frac {11 \ln \left (1+\frac {5 x}{3}\right )}{78125}+\frac {176 x}{5}-\frac {24 x \left (-5 x +6\right )}{5}-\frac {54 x \left (\frac {100}{9} x^{2}-10 x +12\right )}{25}+\frac {243 x \left (-\frac {625}{9} x^{3}+\frac {500}{9} x^{2}-50 x +60\right )}{250}-\frac {37179 x \left (\frac {2500}{27} x^{4}-\frac {625}{9} x^{3}+\frac {500}{9} x^{2}-50 x +60\right )}{62500}+\frac {19683 x \left (-\frac {218750}{243} x^{5}+\frac {17500}{27} x^{4}-\frac {4375}{9} x^{3}+\frac {3500}{9} x^{2}-350 x +420\right )}{1093750}\) \(103\)

[In]

int((1-2*x)*(2+3*x)^5/(3+5*x),x,method=_RETURNVERBOSE)

[Out]

-81/5*x^6-5427/125*x^5-17469/500*x^4+2469/625*x^3+127779/6250*x^2+166663/15625*x+11/78125*ln(x+3/5)

Fricas [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.73 \[ \int \frac {(1-2 x) (2+3 x)^5}{3+5 x} \, dx=-\frac {81}{5} \, x^{6} - \frac {5427}{125} \, x^{5} - \frac {17469}{500} \, x^{4} + \frac {2469}{625} \, x^{3} + \frac {127779}{6250} \, x^{2} + \frac {166663}{15625} \, x + \frac {11}{78125} \, \log \left (5 \, x + 3\right ) \]

[In]

integrate((1-2*x)*(2+3*x)^5/(3+5*x),x, algorithm="fricas")

[Out]

-81/5*x^6 - 5427/125*x^5 - 17469/500*x^4 + 2469/625*x^3 + 127779/6250*x^2 + 166663/15625*x + 11/78125*log(5*x
+ 3)

Sympy [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.94 \[ \int \frac {(1-2 x) (2+3 x)^5}{3+5 x} \, dx=- \frac {81 x^{6}}{5} - \frac {5427 x^{5}}{125} - \frac {17469 x^{4}}{500} + \frac {2469 x^{3}}{625} + \frac {127779 x^{2}}{6250} + \frac {166663 x}{15625} + \frac {11 \log {\left (5 x + 3 \right )}}{78125} \]

[In]

integrate((1-2*x)*(2+3*x)**5/(3+5*x),x)

[Out]

-81*x**6/5 - 5427*x**5/125 - 17469*x**4/500 + 2469*x**3/625 + 127779*x**2/6250 + 166663*x/15625 + 11*log(5*x +
 3)/78125

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.73 \[ \int \frac {(1-2 x) (2+3 x)^5}{3+5 x} \, dx=-\frac {81}{5} \, x^{6} - \frac {5427}{125} \, x^{5} - \frac {17469}{500} \, x^{4} + \frac {2469}{625} \, x^{3} + \frac {127779}{6250} \, x^{2} + \frac {166663}{15625} \, x + \frac {11}{78125} \, \log \left (5 \, x + 3\right ) \]

[In]

integrate((1-2*x)*(2+3*x)^5/(3+5*x),x, algorithm="maxima")

[Out]

-81/5*x^6 - 5427/125*x^5 - 17469/500*x^4 + 2469/625*x^3 + 127779/6250*x^2 + 166663/15625*x + 11/78125*log(5*x
+ 3)

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 38, normalized size of antiderivative = 0.75 \[ \int \frac {(1-2 x) (2+3 x)^5}{3+5 x} \, dx=-\frac {81}{5} \, x^{6} - \frac {5427}{125} \, x^{5} - \frac {17469}{500} \, x^{4} + \frac {2469}{625} \, x^{3} + \frac {127779}{6250} \, x^{2} + \frac {166663}{15625} \, x + \frac {11}{78125} \, \log \left ({\left | 5 \, x + 3 \right |}\right ) \]

[In]

integrate((1-2*x)*(2+3*x)^5/(3+5*x),x, algorithm="giac")

[Out]

-81/5*x^6 - 5427/125*x^5 - 17469/500*x^4 + 2469/625*x^3 + 127779/6250*x^2 + 166663/15625*x + 11/78125*log(abs(
5*x + 3))

Mupad [B] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 35, normalized size of antiderivative = 0.69 \[ \int \frac {(1-2 x) (2+3 x)^5}{3+5 x} \, dx=\frac {166663\,x}{15625}+\frac {11\,\ln \left (x+\frac {3}{5}\right )}{78125}+\frac {127779\,x^2}{6250}+\frac {2469\,x^3}{625}-\frac {17469\,x^4}{500}-\frac {5427\,x^5}{125}-\frac {81\,x^6}{5} \]

[In]

int(-((2*x - 1)*(3*x + 2)^5)/(5*x + 3),x)

[Out]

(166663*x)/15625 + (11*log(x + 3/5))/78125 + (127779*x^2)/6250 + (2469*x^3)/625 - (17469*x^4)/500 - (5427*x^5)
/125 - (81*x^6)/5